Paul Besrukow

Paul Besrukow, M.Sc.

Contact:
Phone: +49 6722 502 315
eMail: Paul.Besrukow(at)hs-gm.de
Postal Address:Von-Lade-Straße 1
D-65366 Geisenheim
Address: Building 6120
Room 00.65
Von-Lade-Straße 2
65366 Geisenheim
Research Projects

Project start: 11.11.2019
Project end: 06.05.2022
Sponsor: Federal Office for Agriculture and Food

The project aims at producing, analyzing and applying novel formulations from stilbenoid-rich extracts of the viticultural by-product grape cane. Scientific goals include the in-depth investigation of biological (e.g., cultivar, vintage, location, weather conditions) and technological (e.g., storage, extraction methods) impacts upon the stilbenoid levels of grape cane extracts as well as the decipherment of further phenolic compounds herein. In order to stabilize these UV-sensetive bioactive substances, a special focus is furthermore laid on the optimization of the extract formulation. In a last step, grape cane extracts are tested on their fungicidal efficacy against downy mildew (causal agent: Plasmopara viticola) in laboratory, greenhouse and field trials.

Hochschule Geisenheim
© Prof. Dr. Frank Will

Project start: 17.06.2019
Project end: 31.12.2025
Sponsor: Federal Ministry of Food and Agriculture

The control of downy mildew, caused by Plasmopara viticola, is one of the major challenges in viticulture, especially in organic viticulture. Due to the ban of copper-containing pesticides and massive impacts of climate change, organic viticulture is increasingly entering an economic crisis. Therefore, the aim of the proposed joint project "VITIFIT" is to develop a catalogue of measures with practicable strategies for maintaining grapevine health. In this way, cultivation conditions are improved, the production security is consolidated and thus economic viability is guaranteed. Crop protection strategies will mainly be based on copper minimisation (microencapsulated copper salts) and copper substitutes (plant extracts, UVC technology) and their combination. Associated cultivation and cultural measures should reduce the inoculum potential of P. viticola. Molecular biological analyses will address the mycobiome of the vine leaf under these conditions. Particular attention should be paid to the plant protection agent potassium phosphonate. Existing and newly bred fungus tolerant grape varieties (in German: PIWIs) should play a central role in the developed action plans. Aims here are the improvement of the enological wine style, the market acceptance of PIWIs and their introduction into practice. The identification of new resistance loci against P. viticola and their integration into current breeding lines will support the development of novel PIWIs. Another focus of the project is the adaptation of the forecast model "VitiMeteo Rebenperonospora" to PIWIs. In the sector of knowledge and technology transfer, communication, the flow of information and networking between research and practice are to be optimised. The VITIFIT project should make a significant contribution to achieving the "20% goal" (national sustainability goal concerning the percentage of organic agriculture area).